Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:
In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.
A basic result of differential geometry states that normal coordinates at a point always exist on a manifold with a symmetric affine connection. In such coordinates the covariant derivative reduces to a partial derivative (at p only), and the geodesics through p are locally linear functions of t (the affine parameter). This idea was implemented in a fundamental way by Albert Einstein in the general theory of relativity: the equivalence principle uses normal coordinates via inertial frames. Normal coordinates always exist for the Levi-Civita connection of a Riemannian or Pseudo-Riemannian manifold. By contrast, in general there is no way to define normal coordinates for Finsler manifolds in a way that the exponential map are twice-differentiable (Busemann 1955).